Sensor Spannzylinder

Spannzylinder

Doppelt wirkend 70 bar

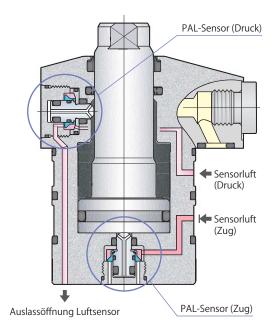
Typ CNB

Zug- Sensormodell тур СМВ02-15ТВ

Druck- / Zug Sensormodell тур CNB02-15TD

Kompaktes Modell Typ CNB02-15TN

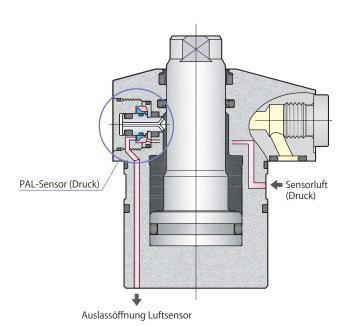
Druck- Sensormodell тур CNB02-15TU

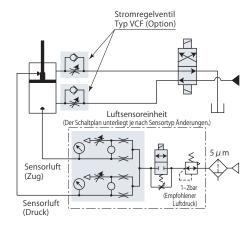

PAT.

Druck-/Zug Sensormodell D

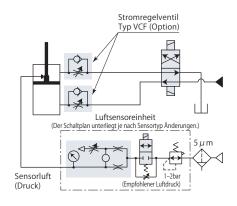
Typ CNB - D PAT.

Spannzylinder




Druck- Sensormodell U

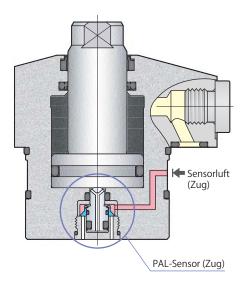
Typ CNB - U



Hydraulik- und Pneumatikplan

Technische Daten → Seite 250 Anschluss → Seite 251 PAL-Sensor → Seite 252 Abmessungen → Seite 256 Detailzeichnung - Montage \rightarrow Seite 260

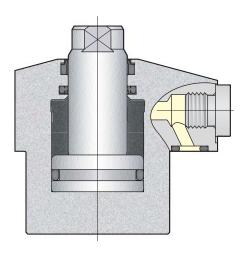
Hydraulik- und Pneumatikplan



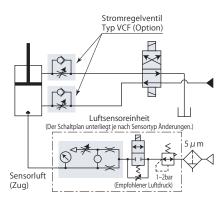
Technische Daten → Seite 250 Anschluss → Seite 251 PAL-Sensor → Seite 263 Abmessungen → Seite 266 Detailzeichnung - Montage \rightarrow Seite 270

Typ CNB - B PAT.

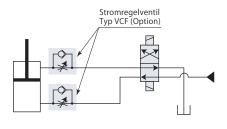
Spannzylinder



Kompaktes Modell N


Typ CNB - N

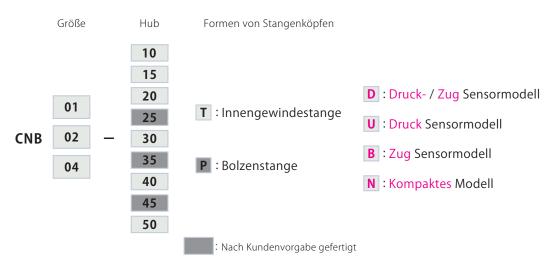
Beim kompakten Modell stehen keine Sensoren zur Verfügung



Hydraulik- und Pneumatikplan

Technische Daten → Seite 250 Anschluss → Seite 251 PAL-Sensor → Seite 273 Abmessungen → Seite 276 Detailzeichnung - Montage \rightarrow Seite 280

Hydraulikplan



Technische Daten → Seite 250 Anschluss → Seite 251 → Seite 284 Abmessungen Detailzeichnung - Montage \rightarrow Seite 288

Technische Daten

Spannzylinder

Für weitere Informationen zu der unteren Rohranschlüsse erkundigen Sie sich bitte direkt bei der Pascal GmbH.

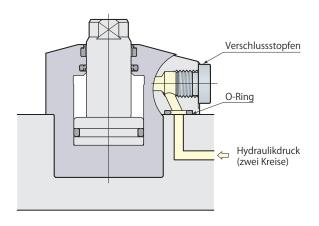
Formen von Stangenköpfen

T: Innengewindestange

Т	- ур		CNB01	CNB02	CNB04
Zylinderkraft	Druck	kN	2.7	3.4	4.9
(Áydraulikdruck 70 bar)	Zug	kN	1.6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.2
Berechnungsformel	Druck		F=0.38×0.1P	F=0.49×0.1P	F=0.71×0.1P
für Zylinderkraft*1	Zug		$F=0.23\times0.1P$ $F=0.29\times0.1P$ $F=0.$	F=0.45×0.1P	
Kolbeninnendurchmesser		mm	22	25	30
Stangendurchmesser		mm	14	16	18
7. dia dayka nazität	Druck	cm ²	3.8	4.9	7.1
Zylinderkapazität	Zug	cm ²	2.3	2.9	4.5
Max. Öldurchflussmenge	·	L/min	0.8	1.0	1.6
Empfohlenes Anzugsmoment	(Befestigungsschra	uben)*2 N·m	3.5	7	7

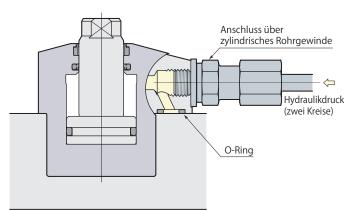
- Druckbereich: 15–70 bar (Typ CNB-D, CNB-U, CNB-B), 5–70 bar (Typ CNB-N)
- Prüfdruck: 105 bar

- Betriebstemperatur: 0-70 °C
- Benutzte Flüssigkeit: Universal-Mineral-Hydrauliköl (entsprechend ISO-VG32)
- Die Dichtungen sind beständig gegen Schneidflüssigkeit auf Chlor-Basis (nicht wärmebeständige Ausführung).
- *1:F=Zylinderkraft (kN), P=Hydraulikdruck (bar)
- *2:ISO R898 Klasse 12.9

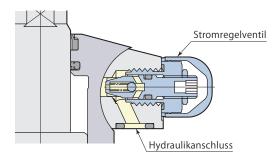

Doppelt wirkend

Als Anschlussmöglichkeiten stehen O-Ring-Anschluss und Rohrleitungsanschluss (Typ G) zur Verfügung.

Spannzylinder

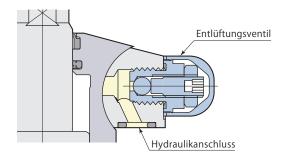

O-Ring-Anschluss

Bei Wahl des O-Ring-Anschlusses können an die Rohrleitungsanschlüsse (Typ G) ein Stromregelventil Typ VCF und ein Entlüftungsventil Typ VCE angeschlossen werden.


Rohrleitungsanschluss (Typ G)

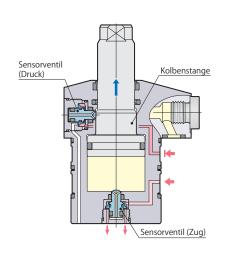
Verschlussstopfen abnehmen, wenn der Rohrleitungsanschluss gewählt wird. (Es muss ein O-Ring verwendet werden.) Siehe **Seite** → **384** für Details zu Bördelloses Anschlussfitting für G-Gewinde. Stromregel- und Entlüftungsventil müssen bei Wahl des Rohrleitungsanschlusses in der Ölbahn montiert werden.

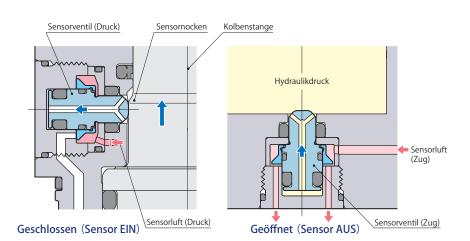
Stromregelventil Typ VCF


→Seite 320

Entlüftungsventil Typ VCE

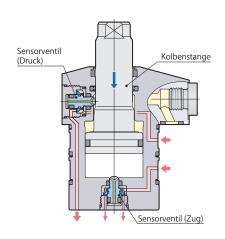
→Seite 322

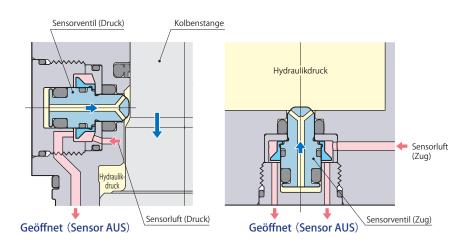



Bei Montage des Stromregelventils Typ VCF am Rohrleitungsanschluss (Typ G) des Spanners muss in der Leitung zum Spanner ein Entlüftungsventil vorgesehen werden. (Einzelheiten zur Montage von Typ VCE siehe → Seite 322)

Funktion und Struktur des PAL-Sensors

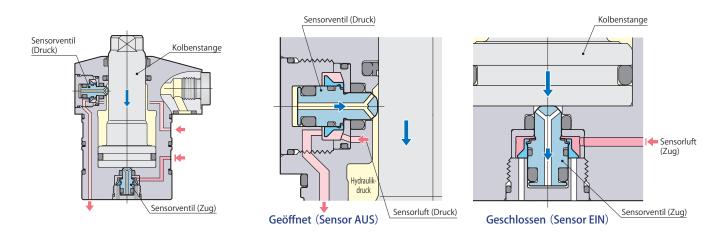
Druckendkontrolle




CNB - D

Das Sensorventil (Druck) wird durch den Sensornocken nach unten gedrückt und unterbricht die Sensorluftzufuhr, sobald die Kolbenstange das Druckende erreicht hat. Das Sensorventil (Zug) wird durch die Hydraulikkraft nach oben gedrückt, öffnet so den Luftauslass und erkennt die Druckendposition.

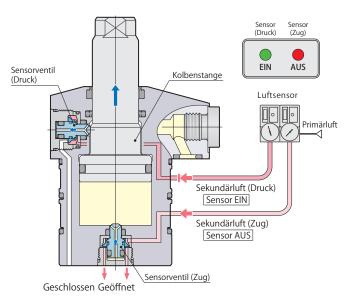
In der Mitte des Hubs

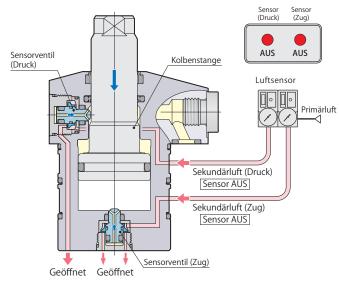


 Das Sensorventil (Druck) wird durch die Hydraulikkraft während des Kolbenstangenhubs nach oben gedrückt und öffnet so den Luftauslass. Das Sensorventil (Zug) wird durch die Hydraulikkraft nach oben gedrückt und öffnet den Luftauslass.

Funktion und Struktur des PAL-Sensors

Zugendkontrolle



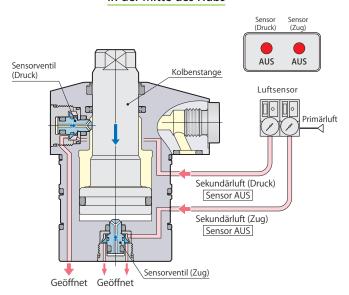

Das Sensorventil (Zug) wird durch die Kolbenstange nach unten gedrückt und unterbricht die Sensorluftzufuhr, sobald der Kolben die Zugendposition erreicht hat. Das Sensorventil (Druck) wird durch die Hydraulikkraft nach oben gedrückt, öffnet so den Luftauslass und erkennt die Zugendposition.

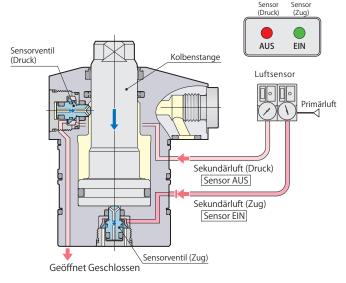
Sensorsignal Druckende - Zugende

Druckendkontrolle

In der Mitte des Hubs

Der Sensor funktioniert möglicherweise nicht korrekt, wenn der Zylinder nicht mit Hydraulikdruck beaufschlagt ist, da der Kolben des Spanners sich unter solchen äußeren Bedingungen bewegt. Der Hydraulikdruck für den Zylinder muss die ganze Zeit über anliegen.


Sensorsignal (Druck)	EIN	Druckende
Sensorsignal (Zug)	AUS	Diuckende

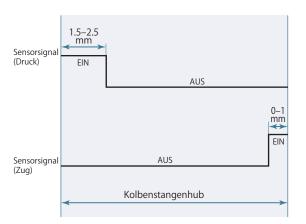

Sensorsignal (Druck) AUS
Sensorsignal (Zug) AUS Hubs

Für das Auslösen des Sensorventils ist ein Hydraulikdruck von über 15 bar erforderlich. Um ein Ausschaltsignal (AUS) während des Ventilhubs zu erhalten, muss im Rücklauf ein Stromregelventil einen Gegendruck von über 15 bar erzeugen.

In der Mitte des Hubs

Zugendkontrolle

Der Sensor funktioniert möglicherweise nicht korrekt, wenn der Zylinder nicht mit Hydraulikdruck beaufschlagt ist, da der Kolben des Spanners sich unter solchen äußeren Bedingungen bewegt. Der Hydraulikdruck für den Zylinder muss die ganze Zeit über anliegen.

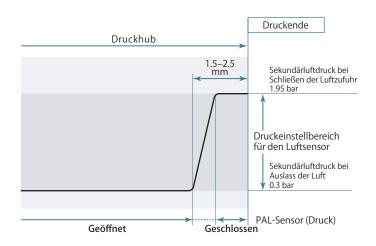

Sensorsignal (Druck)	AUS	In der Mitte des
Sensorsignal (Zug)	AUS	Hubs

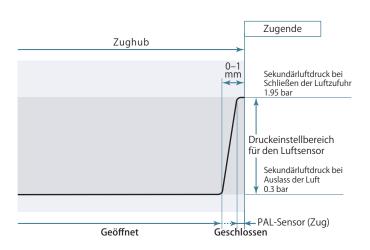
Sensorsignal (Druck)	AUS	Zuganda
Sensorsignal (Zug)	EIN	Zugende

Für das Auslösen des Sensorventils ist ein Hydraulikdruck von über 15 bar erforderlich. Um ein Ausschaltsignal (AUS) während des Ventilhubs zu erhalten, muss im Rücklauf ein Stromregelventil einen Gegendruck von über 15 bar erzeugen.

Doppelt wirkend

Auslösepunkt des Luftsensors

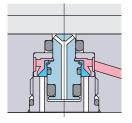

- Einzelheiten zur Einstellung entnehmen Sie bitte der mitgelieferten Bedienungsanleitung des Sensors.
- Die Kennwerte der Erfassungsgenauigkeit sowie Erfassungszeitspanne und Druckdifferenzen variieren je nach Hersteller und Sensorseriennummer. Den korrekten Sensortyp unter Berücksichtigung der Sensoranwendung und entsprechenden Eigenschaften auswählen.


Luftsensoreinheit empfohlene Nutzungsbedingungen

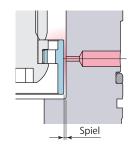
Lieferant und Modell	ISA3-F/G Serie, Hersteller SMC
	GPS2-05, GPS3-E Serie, Hersteller CKD
Druck der zugeführten Luft	1–2 bar
Empfohlener Rohrinnendurchmesser	ø4 mm (ISA3-F:ø2.5 mm)
Gesamtleitungslänge	Max. 5 m

- Trockene und gefilterte Luft zuführen. Eine Partikelgröße von 5 μ m oder weniger ist zu empfehlen.
- Ein Magnetventil mit Nadel für die Luftsensoreinheit verwenden und so ansteuern, dass die gesamte Zeit über Luft zugeführt wird, damit keine Späne oder Kühlmitteltropfen durch die Auslassöffnung des Spanners eindringen.
- Es gibt Fälle, in den die Lufterfassung nicht entsprechend der Bemessung ausgeführt werden kann, wenn die Benutzung nicht so wie in der oben dargestellten Anwendung erfolgt. Für Einzelheiten wenden Sie sich bitte an das technische Servicezentrum.

Verhältnis zwischen Sensorluftdruck, PAL-Sensor und Kolbenhub



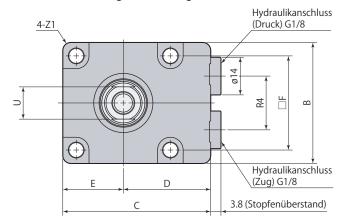
Das links dargestellte Diagramm zeigt das Verhältnis zwischen PAL-Sensor, Kolbenhub und Sekundärluftdruck. (Der im Diagramm angegebene Luftdruck versteht sich als Bezugswert, ausgehend von einem Primärluftdruck von 2 bar für einen Zylinder.)

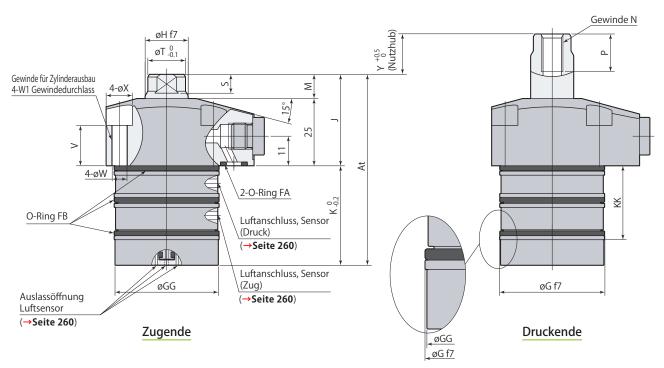

Da der neue PAL-Sensor im Vergleich zum Vorläufer-modell weniger Luftleckverluste aufweist,

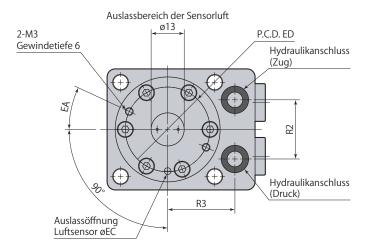
- Erhöht den Druckeinstellbereich des Sensors und vereinfacht dadurch seine Einstellung. (Beispiel: Druckeinstellbereich 0.3–1.95 bar im Diagramm)
- Ermöglicht den Einsatz eines Luftsensors für mehrere Zylinder, da der Druck bei Unterbrechung der Luftzufuhr besser gehalten wird. (Es können maximal 10 Zylinder über einen Sensor erfasst werden.)
- Erlaubt die Wahl eines Luftsensors mit weniger Luftverbrauch, d.h. mit kleinem Anschlussdurchmesser.
- Kann bei Öffnen und Schließen des PAL-Sensor hohen Differentialdruck erzeugen, so dass der Primärdruck des Sensors so niedrig wie möglich eingestellt und der Luftverbrauch gesenkt werden kann.

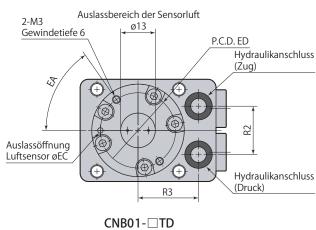
Neuer PAL-Sensor Vorhergehendes Sensorventil

Bietet aufgrund der Tellerstruktur ausgezeichnete Dichteigenschaften und kann beim Öffnen und Schließen einen hohen Differentialdruck erzeugen, so dass Luftleckverluste auf ein Minimum reduziert werden.




Hohe Luftverluste aufgrund der großen Fläche.


CNB - TD


Abmessungen

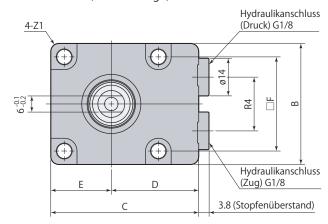
(Innengewindestange)

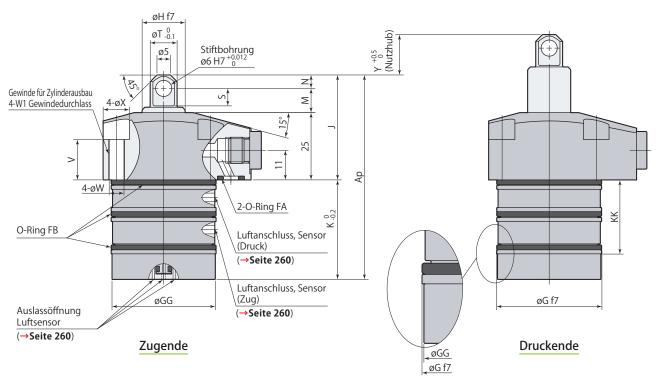
Befestigungsschrauben werden nicht mitgeliefert.

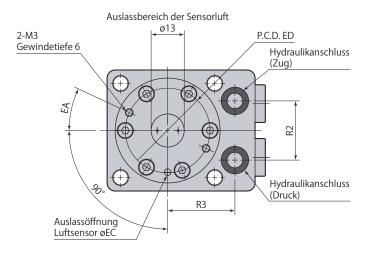
								mm
Тур		CNB01	I-□TD	CNB02	CNB04-□TD			
Y	(Hub)		10, 15,	20, 25, 3	0, 35, 40	, 45, 5	0	
Zylinderkapazität	Druck	0.38	3×Y	0.49	Э×Y		0.71×	Υ
(cm³)	Zug	0.23	$3\times Y$	0.29	Э×Y		0.45×	Υ
At		Y=10	Y=15-50	Y=10	Y=15-50	Y=10)	Y=15-50
	•	70	Y+55	71	Y+56	73.5		Y+58.5
В		3		4			50	
С			0.5	5			60	
D		2			2.5		35	
E			1.5	1	2.5		25	
F			0.5	3			40	2025
øG			5 -0.025 -0.050		9 -0.025 -0.050		47 -0	
øG(J		4.4		8.4		46.4	
øH .			4 -0.016 -0.034		6 -0.016 -0.034		18 -0).034
J		3	- I	3	I	V 10	35	. 15 50
K		Y=10 37	Y=15-50	Y=10	Y=15-50	Y=10		Y=15-50
		Y=10, 15	Y+22 Y=20-50	37 V-10 15	Y+22 Y=20-50	38.5 Y=10, 15	Y=20	Y+23.5 Y=25-50
Kk	<	27.5	32.5	Y=10, 15 27.5	32.5	29	34	32.5
M	NA.		8		9	2.9	10	32.3
N		M6×1				Λ	ло Л8×1.2	25
P		11		1			14	
R2)	18		22		24		
R3	3	22.5		25		28		
R4	R4		16.2		0		22	
S (Höhe Schli	üsselweite)	6			7		8	
øT	øT		2	1	4		16	
U	U (Schlüsselweite)		0	1	2		14	
V	V		7	1	5		15	
øW			4.5	5.5		5.5		
W	1	M5>	×0.8	M6×1			$M6 \times 1$	
øΧ			8		9.5		9.5	
Z1	l		3		3		R5	
EA	4	5	5°	2	5°		20°	
øEC	øEC		2		2.5		3.3	
EC		2			1.5		38	
O-Ring FA (Fluor-Gu		Р		Р			P7	
O-Ring FB (Fluor-Gu			8-026		8-028		S568-0	30
Stromregelventil*	Zulauf	VCF		VCF		VCF01		
	Rücklauf		01 <mark>S</mark> -O		01-0		VCF01-	-0
Entlüftung	gsventil	VCE	01	VCE	01	'	VCE01	

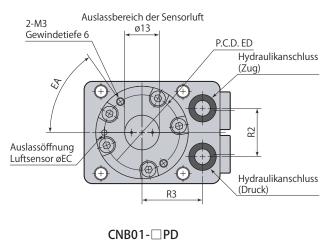
 $[\]hbox{\bf *}: \hbox{W\"{a}hlen Sie abh\"{a}ngig von der Zylindergr\"{o}\&e das geeignete VCF Modell}.$

Einzelheiten zu Optionen finden Sie auf der jeweiligen Seite. ● Stromregelventil → Seite 320 ● Entlüftungsventil → Seite 322


									kg
Hub	10	15	20	25	30	35	40	45	50
CNB01-□TD	0.6	0.6	0.7	0.7	0.7	0.7	0.7	0.8	0.8
CNB02-□TD	0.7	0.7	0.7	0.8	0.8	0.9	0.9	1.0	1.0
CNB04-□TD	0.9	0.9	1.0	1.0	1.1	1.1	1.2	1.2	1.3


[●] CNB□-□TD (Druck- / Zug Sensormodell, Innengewindestange) 25, 35, 45 mm Hub sind nach Kundenvorgabe gefertigte Modelle.


Sensor Spannzylinder Bolzenstange


Abmessungen

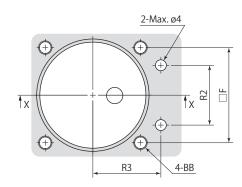
(Bolzenstange)

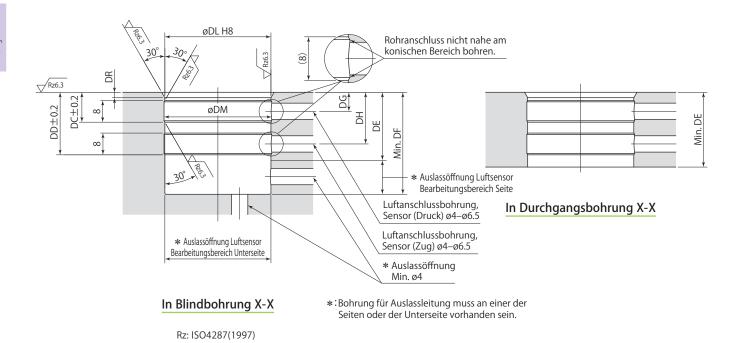
- Befestigungsschrauben werden nicht mitgeliefert.
- Empfohlenes Material für den Stift: SCM435-H (HB269–331)

CNB□-□PD

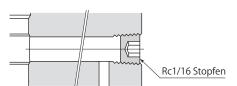
T	_	CND01		CNDO	2-□PD	CNI	D04 =	mm
Тур		CNB01-□PD				CNB04- □ PD 45. 50		
	(Hub)	0.20			0, 35, 40			,
Zylinderkapazität (cm³)	Druck	0.38×Y			9×Y		0.71×Y	
(CIII-)	Zug		B×Y		9×Y		0.45×Y	
A	р	Y=10	Y=15-50	Y=10	Y=15-50	Y=10	Y	=15-50
		76	Y+61	76	Y+61	79		Y+64
В		3		4			50	
С			0.5	5			60	
D		2			2.5		35	
E			1.5		2.5		25	
F			0.5	3			40	225
øG			5 -0.025 -0.050		9 -0.025 -0.050		47 -0.	050
øG(4.4		8.4		46.4	
øН			4 -0.016 -0.034		6 ^{-0.016} _{-0.034}		18 -0.	016 034
J		3	- 	3	- I		40.5	
K		Y=10	Y=15-50	Y=10	Y=15-50	Y=10	Y	=15-50
		37	Y+22	37	Y+22	38.5		Y+23.5
Kŀ	<	Y=10, 15	Y=20-50	Y=10, 15	Y=20-50	Y=10, 15	Y=20	Y=25-50
		27.5	32.5	27.5	32.5	29	34	32.5
М		9			9		9.5	
N		5			5		6	
R2	2	18		22		24		
R3	3	22.5		25		28		
R4	4	1	6.2	20		22		
S			6.5	6.5		7		
ØΤ		1	0	10		12		
V	V		7	1	5		15	
øW	øW		4.5		5.5		5.5	
W	′1	M5>	< 0.8	M6×1		M6×1		
øΧ			8		9.5		9.5	
Z	1	R	3	R	3	R5		
E.F	4	5	5°	2	5°		20°	
øEC			2		2.5		3.3	
EC)	2	8	3	1.5		38	
O-Ring FA (Fluor-Gu	ummi Härte Hs90)	Р	7	Р	7		Р7	
O-Ring FB (Fluor-Gu	ummi Härte Hs70)	AS56	8-026	AS56	8-028	A	S568-03	30
Stromregelventil*	Zulauf	VCF	015	VCF	01	,	VCF01	
Juonnegeivenul.	Rücklauf	VCF	01 <mark>S</mark> -O	VCF	01-0	VCF01-O		
Entlüftung	gsventil	VCE01		VCE01		VCE01		

^{*:} Wählen Sie abhängig von der Zylindergröße das geeignete VCF Modell.


Einzelheiten zu Optionen finden Sie auf der jeweiligen Seite. ● Stromregelventil → Seite 320 ● Entlüftungsventil → Seite 322


● CNB□-□PD (Druck- / Zug Sensormodell, Bolzenstange) wird nach Kundenvorgabe gefertigt.

Hub	10	15	20	25	30	35	40	45	50
CNB01-□PD	0.6	0.6	0.7	0.7	0.7	0.7	0.7	0.8	0.8
CNB02-□PD	0.7	0.7	0.7	0.8	0.8	0.9	0.9	1.0	1.0
CNB04-□PD	0.9	0.9	1.0	1.0	1.1	1.1	1.2	1.2	1.3


Doppelt wirkend

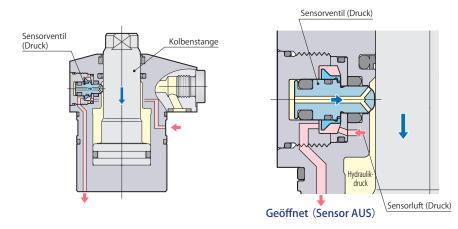
Detailzeichnung - Montage

- Bei der Montage ausreichend Schmierfett auf Fase und Bohrung auftragen. Wird zu viel Schmierfett aufgetragen, kann dieses die Anschlussbohrung blockieren und einen Sensordefekt verursachen.
- 30°-Konusbearbeitung ist zum Schutz des O-Rings vor Beschädigung erforderlich. Achten Sie bei Anbringen der Bohrung für die Sensorluft darauf, dass der konische Bereich frei ist.
- Die Bohrung für die Sensorluftleitung kann als Pilotbohrung für einen Rc 1/16 Stopfen verwendet werden.

CNB-D	17.2 Compagned of
	1000

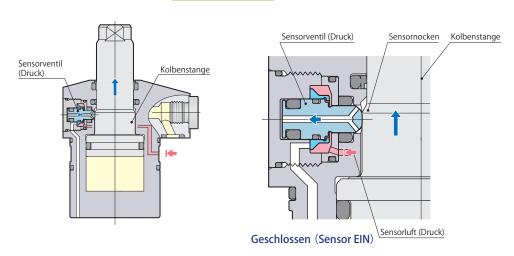
									mm	
Тур	CNB01-□TD CNB01-□PD									
Hub	10	15	20	25	30	35	40	45	50	
DC	11	11	16	16	16	16	16	16	16	
DD	23	23	28	28	28	28	28	28	28	
DE	27.5	27.5	32.5	32.5	32.5	32.5	32.5	32.5	32.5	
DF	37.5	37.5	42.5	47.5	52.5	57.5	62.5	67.5	72.5	
DG	7	7	12	12	12	12	12	12	12	
DH	19	19	24	24	24	24	24	24	24	
øDL					35 +0.039					
øDM					35.6					
DR	2	2	1	1	1	1	1	1	1	
ВВ					M4					
F		30.5								
R2					18					
R3					22.5					

mm


Тур			(CNB02-□T	D CN	NBO2-□PE)		
Hub	10	15	20	25	30	35	40	45	50
DC	11	11	16	16	16	16	16	16	16
DD	23	23	28	28	28	28	28	28	28
DE	27.5	27.5	32.5	32.5	32.5	32.5	32.5	32.5	32.5
DF	37.5	37.5	42.5	47.5	52.5	57.5	62.5	67.5	72.5
DG	7	7	12	12	12	12	12	12	12
DH	19	19	24	24	24	24	24	24	24
øDL					39 +0.039				
øDM					39.6				
DR	2	2	1	1	1	1	1	1	1
ВВ					M5				
F					35				
R2					22				
R3					25				

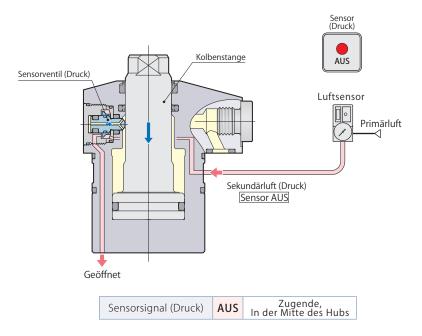
mm

									111111
Тур			(CNB04-□1	TD CN	NB04-□PC)		
Hub	10	15	20	25	30	35	40	45	50
DC	11	11	16	16	16	16	16	16	16
DD	23	23	28	28	28	28	28	28	28
DE	27.5	27.5	32.5	32.5	32.5	32.5	32.5	32.5	32.5
DF	39	39	44	49	54	59	64	69	74
DG	7	7	12	12	12	12	12	12	12
DH	19	19	24	24	24	24	24	24	24
øDL					47 +0.039				
øDM					47.6				
DR	2	2	1	1	1	1	1	1	1
ВВ					M5				
F					40				
R2					24				
R3					28				
	1								

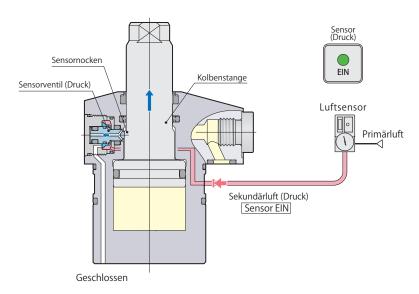

Funktion und Struktur des PAL-Sensors (Druck)

In der Mitte des Hubs

• Das Sensorventil (Druck) wird durch die Hydraulikkraft während des Kolbenstangenhubs nach oben gedrückt und lässt die Sensorluft ab.


Druckendkontrolle

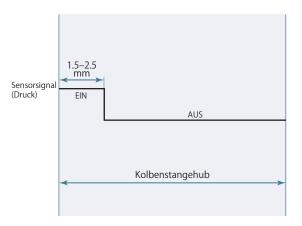
Das Sensorventil (Druck) wird durch den Sensornocken nach unten gedrückt, unterbricht die Sensorluftzufuhr, sobald die Kolbenstange das Druckende erreicht hat, und erkennt die Druckendposition.


Sensorsignal Druckende

In der Mitte des Hubs

Für das Auslösen des Sensorventils ist ein Hydraulikdruck von über 15 bar erforderlich. Um ein Ausschaltsignal (AUS) während des Ventilhubs zu erhalten, muss im Rücklauf ein Stromregelventil einen Gegendruck von über 15 bar erzeugen.

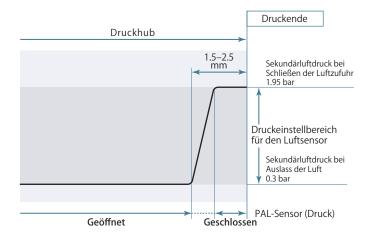
Druckendkontrolle



Der Sensor funktioniert möglicherweise nicht korrekt, wenn der Zylinder nicht mit Hydraulikdruck beaufschlagt ist, da der Kolben des Spanners sich unter solchen äußeren Bedingungen bewegt. Der Hydraulikdruck für den Zylinder muss die ganze Zeit über anliegen.

Doppelt wirkend

Auslösepunkt des Luftsensors

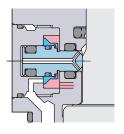

- Einzelheiten zur Einstellung entnehmen Sie bitte der mitgelieferten Bedienungsanleitung des Sensors.
- Die Kennwerte der Erfassungsgenauigkeit sowie Erfassungszeitspanne und Druckdifferenzen variieren je nach Hersteller und Sensorseriennummer. Den korrekten Sensortyp unter Berücksichtigung der Sensoranwendung und entsprechenden Eigenschaften auswählen.

Luftsensoreinheit empfohlene Nutzungsbedingungen

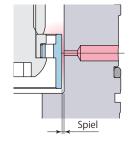
Lieferant und	ISA3-F/G Serie, Hersteller SMC
Modell	GPS2-05, GPS3-E Serie, Hersteller CKD
Druck der zugeführten Luft	1–2 bar
Empfohlener Rohrinnendurchmesser	ø4 mm (ISA3-F:ø2.5 mm)
Gesamtleitungslänge	Max. 5 m

- Trockene und gefilterte Luft zuführen. Eine Partikelgröße von 5μ m oder weniger ist zu empfehlen.
- Ein Magnetventil mit Nadel für die Luftsensoreinheit verwenden und so ansteuern, dass die gesamte Zeit über Luft zugeführt wird, damit keine Späne oder Kühlmitteltropfen durch die Auslassöffnung des Spanners eindringen.
- Es gibt Fälle, in den die Lufterfassung nicht entsprechend der Bemessung ausgeführt werden kann, wenn die Benutzung nicht so wie in der oben dargestellten Anwendung erfolgt. Für Einzelheiten wenden Sie sich bitte an das technische Servicezentrum

Verhältnis zwischen Sensorluftdruck, PAL-Sensor und Kolbenhub

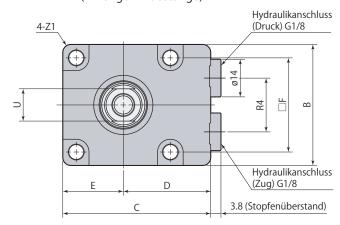


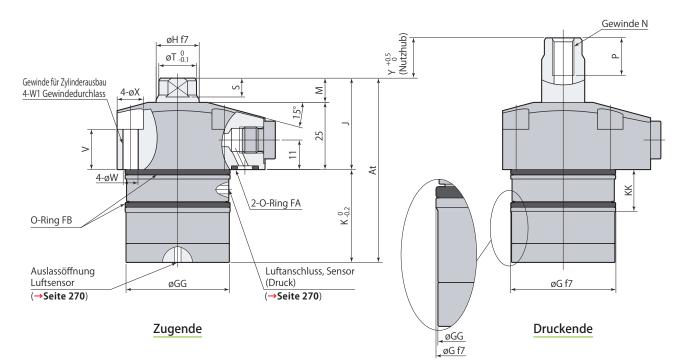
Das oben dargestellte Diagramm zeigt das Verhältnis zwischen Sensorventil, Kolbenhub und Sekundärluftdruck. (Der im Diagramm angegebene Luftdruck versteht sich als Bezugswert, ausgehend von einem Primärluftdruck von 2 bar für einen Zylinder.)

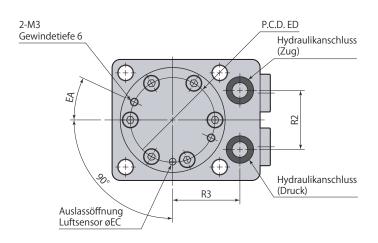

Da der neue PAL-Sensor im Vergleich zum Vorläufer-modell weniger Luftleckverluste aufweist,

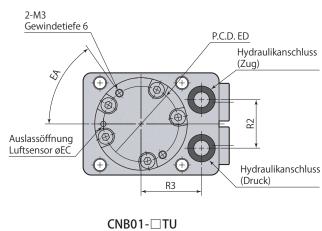
- Erhöht den Druckeinstellbereich des Sensors und vereinfacht dadurch seine Einstellung. (Beispiel: Druckeinstellbereich 0.3-1.95 bar im Diagramm)
- Ermöglicht den Einsatz eines Luftsensors für mehrere Zylinder, da der Druck bei Unterbrechung der Luftzufuhr besser gehalten wird. (Es können maximal 10 Zylinder über einen Sensor erfasst werden.)
- Erlaubt die Wahl eines Luftsensors mit weniger Luftverbrauch, d.h. mit kleinem Anschlussdurchmesser.
- Kann bei Öffnen und Schließen des PAL-Sensor hohen. Differentialdruck erzeugen, so dass der Primärdruck des Sensors so niedrig wie möglich eingestellt und der Luftverbrauch gesenkt werden kann.

Neuer PAL-Sensor Vorhergehendes Sensorventil


Bietet aufgrund der Tellerstruktur ausgezeichnete Dichteigenschaften und kann beim Öffnen und Schließen einen hohen Differentialdruck erzeugen, so dass Luftleckverluste auf ein Minimum reduziert werden.



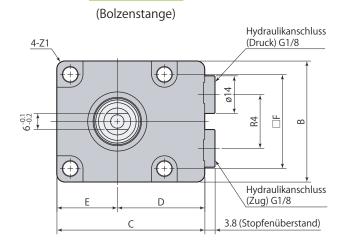

Hohe Luftverluste aufgrund der großen Fläche.

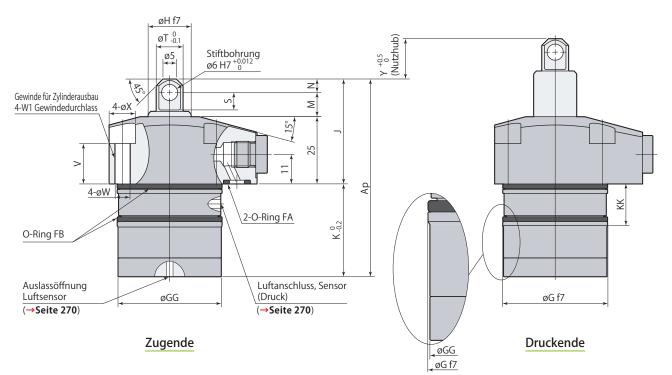

Abmessungen

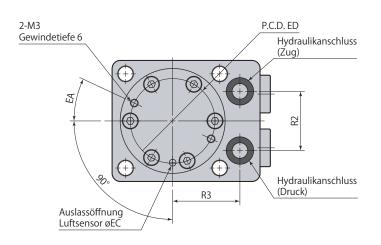
(Innengewindestange)

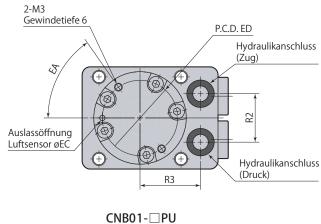
Befestigungsschrauben werden nicht mitgeliefert.

							mm
Тур	p	CNB01	I-□TU	CNB	D2-□TU	CNB04	4-□TU
Υ	(Hub)		10, 15,	20, 25,	30, 35, 40,	45, 50	
Zylinderkapazität	Druck	0.38	$3\times Y$	0.4	49×Y	0.7	1×Y
(cm³)	Zug	0.23	$S \times Y$	0	29×Y	0.45	5×Y
A:	t	Y+5	51.5	Y-	+53.5	Y+:	57.5
В		3	8		45	5	0
С		5	0.5		55	6	0
D		2	9		32.5	3	5
Е		2	1.5		22.5	2	5
F		3	0.5		35	4	0
øG		3	5 ^{-0.025} _{-0.050}		$39 {}^{-0.025}_{-0.050}$	4	7 -0.025 -0.050
øG	G	3	4.4		38.4	4	6.4
øH		1	4 ^{-0.016} -0.034		$16 {}^{-0.016}_{-0.034}$	1	8 -0.016 -0.034
J		3	3		34	3	5
K		Y+1	8.5	Y-	+19.5	Y+2	22.5
KI	/	Y=10, 15	Y=20-50	Y=10, 15	Y=20-50	Y=10, 15	Y=20-50
N	N.	15.5	20.5	15.5	20.5	15.5	20.5
M			8		9	1	0
N		M6	×1	M8	×1.25	M8×	<1.25
Р		1	1		14	1	4
R2	2	1	8		22	2	4
R3	3	2	2.5		25	2	8
R4	4	1	6.2		20	2	2
S (Höhe Schl	üsselweite)		6		7		8
øT		1	2		14	1	6
U	(Schlüsselweite)	1	0		12	1	4
V		1	7		15	1	5
øW	1		4.5		5.5		5.5
W	<u>′</u> 1	M5>	< 0.8	N	16×1	M6	×1
øX			8		9.5		9.5
Z	1	R	3		R3	F	R5
E/	4	5	5°		25°	2	.0°
øE0	C		2		2.5		3.3
E)	2	8		31.5	3	8
O-Ring FA (Fluor-Gu	ummi Härte Hs90)	Р	7		P7	P	77
O-Ring FB (Fluor-Gu	ummi Härte Hs70)	AS56	8-026	AS5	68-028	AS56	8-030
Stromregelventil*	Zulauf	VCF	01 <mark>S</mark>	VC	F01	VCF	01
Stronnegelventil.	Rücklauf	VCF	01 <mark>S</mark> -O	VC	F01-O	VCF	01-0
Entlüftun	gsventil	VCE	01	VC	E01	VCE	01


^{*:} Wählen Sie abhängig von der Zylindergröße das geeignete VCF Modell.


Einzelheiten zu Optionen finden Sie auf der jeweiligen Seite. ● Stromregelventil → Seite 320 ● Entlüftungsventil → Seite 322


									kg
Hub	10	15	20	25	30	35	40	45	50
CNB01-□TU	0.5	0.5	0.6	0.6	0.6	0.6	0.7	0.7	0.7
CNB02-□TU	0.7	0.7	0.7	0.7	0.8	0.8	0.8	0.9	0.9
CNB04-□TU	0.9	0.9	1.0	1.0	1.1	1.1	1.2	1.2	1.3


[●] CNB□-□TU (Druck- Sensormodell, Innengewindestange) 25, 35, 45 mm Hub sind nach Kundenvorgabe gefertigte Modelle.

Abmessungen

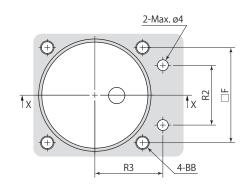
- Befestigungsschrauben werden nicht mitgeliefert.
- Empfohlenes Material für den Stift: SCM435-H (HB269–331)

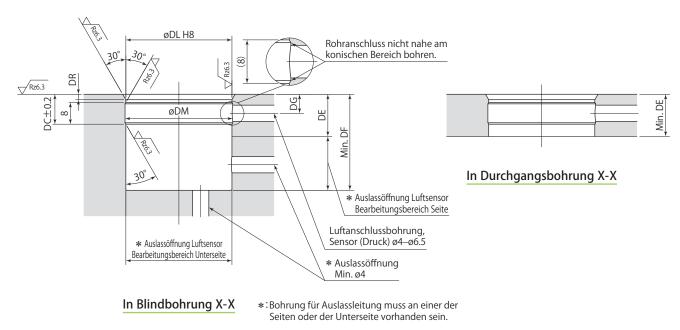
CNB - PU

Doppelt wirkend

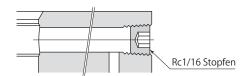
Тур)	CNB01	-□PU		CNB02	-□PU			CNB04	mm 1-□ PU
	(Hub)	31133	10, 15,		25, 30		40,		50	
Zylinderkapazität	Druck	0.38	ХХY		0.49				0.71	×Υ
(cm³)	Zug	0.23	×Y		0.29	×Y			0.45	5×Y
Ap)	Y+5	57.5		Y+5	8.5			Y+	-63
В		3	8		45	5			5	0
С		5	0.5		55	5			6	0
D		2	9		32	2.5			3	5
E		2	1.5		22	2.5			2	5
F		3	0.5		35	5			4	0
øG		3:	5 -0.025 -0.050		39) -0.025 -0.050			4	7 ^{-0.025} _{-0.050}
øGC	Ĵ	3	4.4		38	3.4			4	6.4
øH		1-	4 ^{-0.016} -0.034		16	5 -0.016 -0.034			1	8 -0.016 -0.034
J		3'	9		39)			4	0.5
K		Y+1	8.5		Y+1	9.5			Y+2	22.5
KK	•	Y=10, 15	Y=20-50	Y=1	0, 15	Y=20-	-50	Y=10	0, 15	Y=20-50
IXIX		15.5	20.5	15	5.5	20.	5	15	.5	20.5
M			9		g)				9.5
N			5		Ĺ	5				6
R2)	1	8		22	2			2	4
R3	3	2.	2.5		25	5			2	8
R4	1	1	6.2		20)			2	2
S			6.5		(5.5				7
ØΤ		1	0		10)			1.	2
V		1	7		15	5			1.	5
øW			4.5			5.5				5.5
W	1	M5>	<0.8		M6	×1			M6	×1
øX			8		9	9.5				9.5
Z1		R			R3				R	
EA			5°		2.5	5°				0°
øEC			2			2.5				3.3
EC		2				.5			3	
O-Ring FA (Fluor-Gu		Р			P:					7
O-Ring FB (Fluor-Gu		AS568			AS568					8-030
Stromregelventil*	Zulauf	VCF			VCF				VCF	
	Rücklauf		01 <mark>S</mark> -O		VCF					01-0
Entlüftung	gsventil	VCE	01		VCE)1			VCE	01

^{*:} Wählen Sie abhängig von der Zylindergröße das geeignete VCF Modell.


Einzelheiten zu Optionen finden Sie auf der jeweiligen Seite. ● Stromregelventil → Seite 320 ● Entlüftungsventil → Seite 322


● CNB□-□PU (Druck- Sensormodell, Bolzenstange) wird nach Kundenvorgabe gefertigt.

									kg
Hub	10	15	20	25	30	35	40	45	50
CNB01-□PU	0.5	0.5	0.6	0.6	0.6	0.6	0.7	0.7	0.7
CNB02-□PU	0.7	0.7	0.7	0.7	0.8	0.8	0.8	0.9	0.9
CNB04-□PU	0.9	0.9	1.0	1.0	1.1	1.1	1.2	1.2	1.3


CNB - U

Detailzeichnung - Montage

- Rz: ISO4287(1997)
- Bei der Montage ausreichend Schmierfett auf Fase und Bohrung auftragen. Wird zu viel Schmierfett aufgetragen, kann dieses die Anschlussbohrung blockieren und einen Sensordefekt verursachen.
- 30°-Konusbearbeitung ist zum Schutz des O-Rings vor Beschädigung erforderlich. Achten Sie bei Anbringen der Bohrung für die Sensorluft darauf, dass der konische Bereich frei ist.
- Die Bohrung für die Sensorluftleitung kann als Pilotbohrung für einen Rc 1/16 Stopfen verwendet werden.

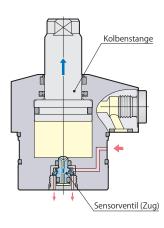
									_	=	=	=	=	_	=	=	=	Į.	1	Ž	TICK.	- - ×	ring -	<u> </u>	rick C	<u> </u>	<u> </u>	<u> </u>		<u> </u>	- C- S- C- S	C & 30	الله الله الله	الله الله الله	S S	ON SERVICE	S S	ON Prince Series	S S	CNE Series	CNB Fuck-Sens	CNB ruck-Sens	CNB ruck-Sens	CNB-	CNB-	CNB-	1 0	CNB-1	CNB-1	CNB-L	CNB-L	CNB-U	CNB-U	CNB-U	CNB-U
CNB-U	CNB-U	CNB-U	CNB-U	CNB-U	CNB-U	Sensom	CNB-U	NB-U	NB-U	NB-U	NB-U	NB-U	VB-U	VB-U	VB-U	JB-U	IB-U	IB-U	B-U	B-U	3-U		~ E		7 5	7 5		⊃ <u>⊊</u>		$\supset \Xi$	\neg $=$					apode	apot	labou	lepou																
CNB-U	CNB-U	CNB-U	CNB-U	CNB-U	CNB-U	CNB-U	Sensom	Sensom	NB-U	NB-U	NB-U	NB-U	VB-U	VB-U	VB-U	JB-U	IB-U	IB-U	B-U	B-U	3-U	3-U-8	— ×		7 5	7 5					_ ⊱	_ ⊏				po	oppo	labo	lopo																
CNB-U	CNB-U	CNB-U	CNB-U	CNB-U	CNB-U	Sensorm	Sensorm	Sensorm	NB-U	NB-U	NB-U	NB-U	VB-U	VB-U	VB-U	JB-U	IB-U	B-U	B-U	B-U	3-U	3-U-8	J-8							⊃ E	7 5	_ E	_ =			o	ode	labo	odel																
CNB-U	CNB-U	CNB-U	CNB-U	CNB-U	CNB-U	Sensorm	Sensorm	Sensorm	NB-U	NB-U	NB-U	NB-U	VB-U	VB-U	VB-U	JB-U	IB-U	B-U	B-U	B-U	9-C	3-U	J-8								7 5	7 5	_ =	_ =		pde	ode	labo	odel																
CNB-U	CNB-U	CNB-U	CNB-U	CNB-U	CNB-U	Sensom	Sensorm	Sensorm	NB-U	NB-U	NB-U	NB-U	VB-U	VB-U	VB-U	JB-U	IB-U	B-U	B-U	B-U	3-U	J-8	→ E		7 8	7 8					¬ ₽	- E	_ E	_ =	_ <	ğ	appe	labo	labo																
CNB-U	CNB-U	CNB-U	CNB-U	CNB-U	CNB-U	Sensormo	Sensorm	Sensormo	NB-U	NB-U	NB-U	NB-U	VB-U	VB-U	VB-U	JB-U	IB-U	B-U	B-U	B-U	3-U	3-U-8	J-5		⊋ Ĕ				D Ĕ	⊃ Ĕ	¬ Ĕ	_ Ĕ	_ ĕ	_ =	_ ~	Š	9	P	le le																
CNB-U	CNB-U	CNB-U	CNB-U	CNB-U	CNB-U	Sensomo	Sensomo	Sensomo	NB-U	NB-U	NB-U	NB-U	VB-U	VB-U	VB-U	JB-U	IB-U	B-U	B-U	B-U	3-U	3-U-8	J-8		7 8	7 [~ Ĕ	_ Ĕ	_ =	_ ~	_ =	9	9	9	9																
CNB-U	CNB-U	CNB-U	CNB-U	CNB-U	CNB-U	Sensormo	Sensormo	Sensormo	NB-U	NB-U	NB-U	NB-U	VB-U	VB-U	VB-U	JB-U	IB-U	IB-U	B-U	B-U	3-U	3-U	3-U-8			٦					٦ ڏ	_ £	_	_ 2	_ 2	7	9	9	무																
CNB-U	CNB-U	CNB-U	CNB-U	CNB-U	CNB-U	Sensomo	Sensormo	Sensomo	NB-U	NB-U	NB-U	NB-U	VB-U	VB-U	VB-U	JB-U	IB-U	IB-U	B-U	B-U	3-U	3-U	3-U)- Omo	-	7					7 %	7 0	7 6	_ 6	_ 8	7	후	4	<u>=</u>																
CNB-U	CNB-U	CNB-U	CNB-U	CNB-U	CNB-U	Sensomor	Sensormor	Sensormor	NB-U	NB-U	NB-U	NB-U	VB-U	VB-U	VB-U	JB-U	IB-U	IB-U	B-U	B-U	3-U	3-U	3-U	- C	1 -)- I						7	7		_ 6	<u> </u>	٩	a.	<u>a</u>																
CNB-U	CNB-U	CNB-U	CNB-U	CNB-U	CNB-U	Sensomo	Sensormor	Sensomos	NB-U	NB-U	NB-U	NB-U	VB-U	VB-U	VB-U	JB-U	IB-U	IB-U	B-U	B-U	3-U	3-U	3-U		اب السام	- C	- C					7	7	_		d.	a.	d.	4																
CNB-U	CNB-U	CNB-U	CNB-U	CNB-U	CNB-U	Sensormod	Sensormod	Sensomod	NB-U	NB-U	NB-U	NB-U	VB-U	VB-U	VB-U	JB-U	IB-U	IB-U	B-U	B-U	3-U	3-U	3-U	-C	- - - - - -	- C	- C				J mod	mod	J	_ pou	_ 0		a.	a.	<u>a</u>																
CNB-U	CNB-U	CNB-U	CNB-U	CNB-U	CNB-U	Sensomod	Sensomod	Sensormod	NB-U	NB-U	NB-U	NB-U	VB-U	VB-U	VB-U	JB-U	IB-U	IB-U	B-U	B-U	3-U	3-U	3-U	-U-	ا ا	-C	D-mod	D III			J mod	_ m	Jod	_ pou	_ 00			-	=																
CNB-U	CNB-U	CNB-U	CNB-U	CNB-U	CNB-U	Sensormode	Sensomode	Sensomode	NB-U	NB-U	NB-U	NB-U	VB-U	VB-U	VB-U	JB-U	IB-U	IB-U	B-U	B-U	3-U	3-U	3-U sormode	-U	-C	-C	-C				J mode	mode	Jode	- John	_				=																
CNB-U	CNB-U	CNB-U	CNB-U	CNB-U - Sensomodell	CNB-U Sensomodell	Sensormodell	Sensormodell	Sensormodell	NB-U Sensormodell	NB-U	NB-U	NB-U	VB-U	VB-U	VB-U	VB-U	IB-U	IB-U	B-U	B-U	3-U	3-U sormodell	3-U sormodell	-U	-U	-U	-U	U	U	U	J modell	J modell	J	nodell	_ node																				
CNB-U	CNB-U k- Sensormodell	CNB-U	CNB-U	CNB-U	CNB-U - Sensormodell	CNB-U	CNB-U Sensormodell	Sensormodell	Sensormodell	NB-U Sensomodell	NB-U	NB-U	NB-U	VB-U	VB-U	VB-U	JB-U	IB-U	IB-U	B-U	B-U	3-U	3-U sormodell	3-U sormodell	-U	-U	-U	U- Imported	U	U	U	J	J	J	J	- Heboo		_																	

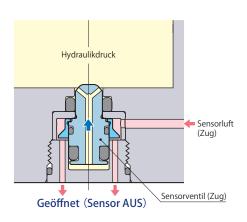
									mm
Тур			(CNB01-□1	ru cn	NB01-□PU	J		
Hub	10	15	20	25	30	35	40	45	50
DC	11	11	16	16	16	16	16	16	16
DE	15.5	15.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5
DF	29	34	39	44	49	54	59	64	69
DG	7	7	12	12	12	12	12	12	12
øDL					35 ^{+0.039}				
øDM					35.6				
DR	2	2	1	1	1	1	1	1	1
BB					M4				
F					30.5				
R2					18				
R3					22.5				

mm

Тур			(CNB02-□T	U CN	NB02-□PU	J		
Hub	10	15	20	25	30	35	40	45	50
DC	11	11	16	16	16	16	16	16	16
DE	15.5	15.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5
DF	30	35	40	45	50	55	60	65	70
DG	7	7	12	12	12	12	12	12	12
øDL					39 +0.039				
øDM					39.6				
DR	2	2	1	1	1	1	1	1	1
ВВ					M5				
F					35				
R2					22				
R3					25				

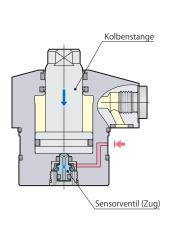
mm

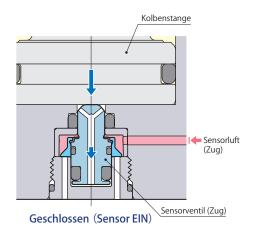

Тур			(CNB04-□1	U CN	IB04-□PU	J		111111
Hub	10	15	20	25	30	35	40	45	50
DC	11	11	16	16	16	16	16	16	16
DE	15.5	15.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5
DF	33	38	43	48	53	58	63	68	73
DG	7	7	12	12	12	12	12	12	12
øDL					47 +0.039				
øDM					47.6				
DR	2	2	1	1	1	1	1	1	1
ВВ					M5				
F					40				
R2					24				
R3					28				


Sensor Spannzylinder

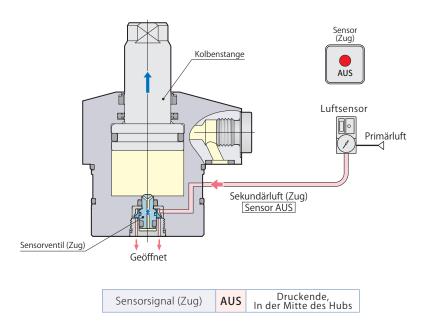
CNB-B Zug- Sensormodell

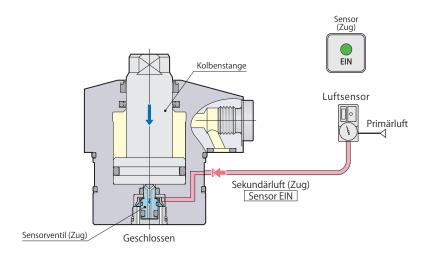
Funktion und Struktur des PAL-Sensors (Zug)


In der Mitte des Hubs



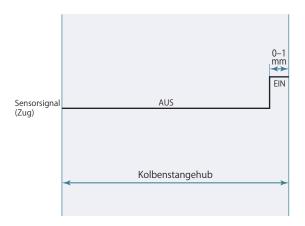
• Das Sensorventil (Zug) wird durch die Hydraulikkraft während des Kolbenstangenhubs nach oben gedrückt und lässt die Sensorluft ab.


Zugendkontrolle


Das Sensorventil (Zug) wird durch die Kolbenstange nach unten gedrückt, unterbricht die Sensorluftzufuhr, sobald der Kolben die Zugendposition erreicht hat, und erkennt so die Zugendeposition.

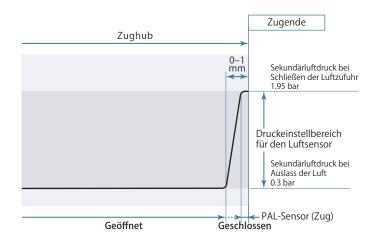
In der Mitte des Hubs

Für das Auslösen des Sensorventils ist ein Hydraulikdruck von über 15 bar erforderlich. Um ein Ausschaltsignal (AUS) während des Ventilhubs zu erhalten, muss im Rücklauf ein Stromregelventil einen Gegendruck von über 15 bar erzeugen.


Zugendkontrolle

Der Sensor funktioniert möglicherweise nicht korrekt, wenn der Zylinder nicht mit Hydraulikdruck beaufschlagt ist, da der Kolben des Spanners sich unter solchen äußeren Bedingungen bewegt. Der Hydraulikdruck für den Zylinder muss die ganze Zeit über anliegen.

Auslösepunkt des Luftsensors

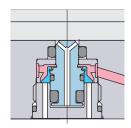

- Einzelheiten zur Einstellung entnehmen Sie bitte der mitgelieferten Bedienungsanleitung des Sensors.
- Die Kennwerte der Erfassungsgenauigkeit sowie Erfassungszeitspanne und Druckdifferenzen variieren je nach Hersteller und Sensorseriennummer. Den korrekten Sensortyp unter Berücksichtigung der Sensoranwendung und entsprechenden Eigenschaften auswählen.

Luftsensoreinheit empfohlene Nutzungsbedingungen

Lieferant und	ISA3-F/G Serie, Hersteller SMC
Modell	GPS2-05, GPS3-E Serie, Hersteller CKD
Druck der zugeführten Luft	1–2 bar
Empfohlener Rohrinnendurchmesser	ø4 mm (ISA3-F:ø2.5 mm)
Gesamtleitungslänge	Max. 5 m

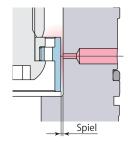
- Trockene und gefilterte Luft zuführen. Eine Partikelgröße von 5μ m oder weniger ist zu empfehlen.
- Ein Magnetventil mit Nadel für die Luftsensoreinheit verwenden und so ansteuern, dass die gesamte Zeit über Luft zugeführt wird, damit keine Späne oder Kühlmitteltropfen durch die Auslassöffnung des Spanners eindringen.
- Es gibt Fälle, in den die Lufterfassung nicht entsprechend der Bemessung ausgeführt werden kann, wenn die Benutzung nicht so wie in der oben dargestellten Anwendung erfolgt. Für Einzelheiten wenden Sie sich bitte an das technische Servicezentrum

Verhältnis zwischen Sensorluftdruck, PAL-Sensor und Kolbenhub



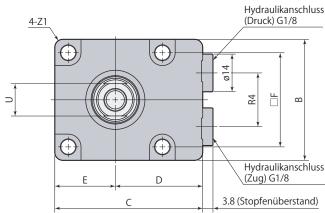
Das oben dargestellte Diagramm zeigt das Verhältnis zwischen Sensorventil, Kolbenhub und Sekundärluftdruck. (Der im Diagramm angegebene Luftdruck versteht sich als Bezugswert, ausgehend von einem Primärluftdruck von 2 bar für einen Zylinder.)

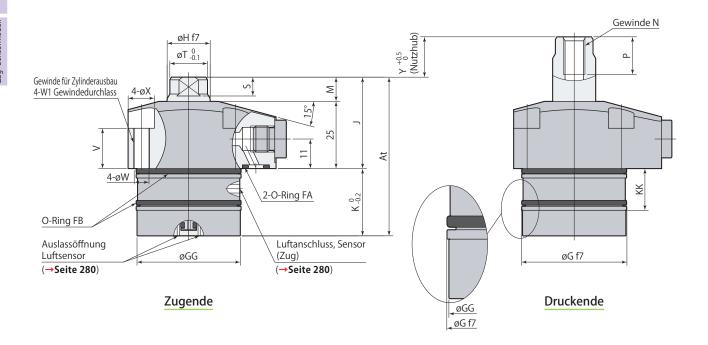
Da der neue PAL-Sensor im Vergleich zum Vorläufer-modell weniger Luftleckverluste aufweist,

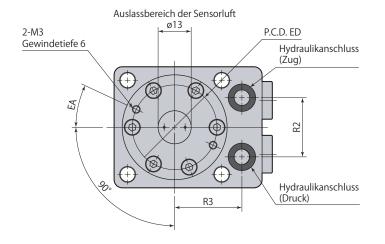

- Erhöht den Druckeinstellbereich des Sensors und vereinfacht dadurch seine Einstellung. (Beispiel: Druckeinstellbereich 0.3-1.95 bar im Diagramm)
- Ermöglicht den Einsatz eines Luftsensors für mehrere Zylinder, da der Druck bei Unterbrechung der Luftzufuhr besser gehalten wird. (Es können maximal 10 Zylinder über einen Sensor erfasst werden.)
- Erlaubt die Wahl eines Luftsensors mit weniger Luftverbrauch, d.h. mit kleinem Anschlussdurchmesser.
- Kann bei Öffnen und Schließen des PAL-Sensor hohen. Differentialdruck erzeugen, so dass der Primärdruck des Sensors so niedrig wie möglich eingestellt und der Luftverbrauch gesenkt werden kann.

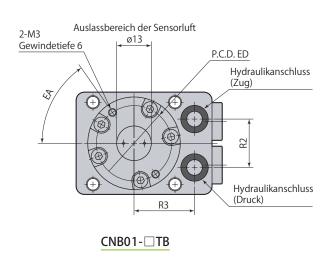
Neuer PAL-Sensor

Bietet aufgrund der Tellerstruktur ausgezeichnete Dichteigenschaften und kann beim Öffnen und Schließen einen hohen Differentialdruck erzeugen, so dass Luftleckverluste auf ein Minimum reduziert werden.


Vorhergehendes Sensorventil




Hohe Luftverluste aufgrund der großen Fläche.

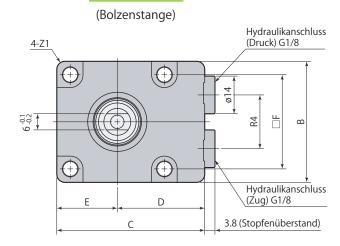

Abmessungen

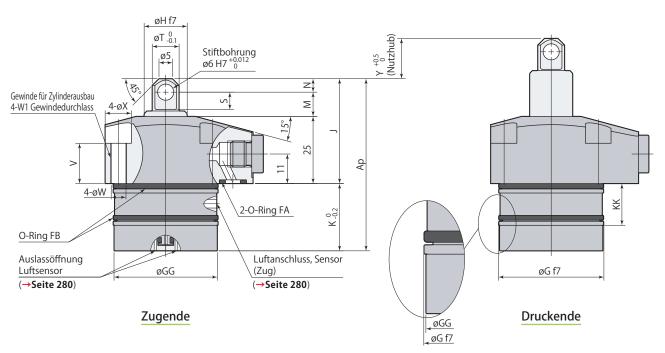
(Innengewindestange)

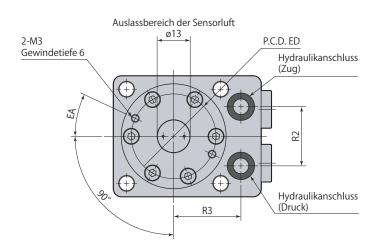
Befestigungsschrauben werden nicht mitgeliefert.

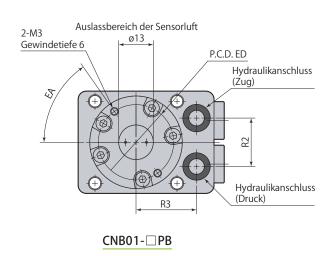
Doppelt wirkend

							mm
Тур	0	CNB0	I-□TB	CNB0	2-□TB	CNB04	I-□TB
Y	(Hub)		10, 15,	20, 25,	30, 35, 40,	45, 50	
Zylinderkapazität	Druck	0.38	3×Y	0.49×Y		0.71	×Υ
(cm³)	Zug	0.23	$8 \times Y$	0.2	9×Y	0.45	×Υ
A1		Y=10	Y=15-50	Y=10	Y=15-50	Y=10	Y=15-50
		58	Y+43	59	Y+44	61.5	Y+46.5
В		3	8	4	45	5	0
C		4	8	Į.	55	6	0
D		2	9	3	32.5	3	5
E		1	9	2	22.5	2.	5
F			0.5		35	4	
øG		3	5 ^{-0.025} -0.050	3	39 -0.025	4	7 -0.025 -0.050
øG	G		4.4		38.4		6.4
øH		1	4 -0.016	,	16 -0.016	1	8 -0.016 -0.034
J		3	3	3	34	3.	5
K		Y=10	Y=15-50	Y=10	Y=15-50	Y=10	Y=15-50
		25	Y+10	25	Y+10	26.5	Y+11.5
Kł	KK		Y=20-50	Y=10, 15	Y=20-50	Y=10, 15	Y=20-50
		15.5	20.5	15.5	20.5	15.5	20.5
M			8		9	1	
N		M6			×1.25	M8×	
Р		1			14	1.	
R2		1			22	2.	
R3			2.5		25	2	
R4			6.2	2	20	2.	
S (Höhe Schl	üsselweite)		6		7		8
øT		1			14	1	
	(Schlüsselweite)	1			12	1.	
V	,	1			15	1.	
øW			4.5	N.4.4	5.5		5.5
W		M5 >		Mic	5×1	M6	
øX			8		9.5		9.5
Z		R			R3	R	
EA			55° 25°			0°	
EI		2			31.5	38 P7	
O-Ring FA (Fluor-Gu			7		20,020		
O-Ring FB (Fluor-Gu			8-026		58-028	AS568-030	
Stromregelventil*	Zulauf	VCF		VCF01 VCF01-O		VCF01 VCF01-O	
F .1"C	Rücklauf		01 <mark>S</mark> -O	1			
Entlüftun	gsventii	VCE	UI	VCI	EU I	VCE	UI


^{*:} Wählen Sie abhängig von der Zylindergröße das geeignete VCF Modell.


Einzelheiten zu Optionen finden Sie auf der jeweiligen Seite. ● Stromregelventil → Seite 320 ● Entlüftungsventil → Seite 322

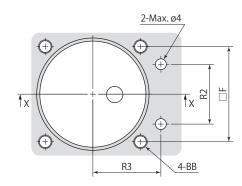

									kg
Hub	10	15	20	25	30	35	40	45	50
CNB01-□TB	0.5	0.5	0.5	0.5	0.5	0.6	0.6	0.6	0.6
CNB02-□TB	0.6	0.6	0.6	0.7	0.7	0.7	0.8	0.8	0.8
CNB04-□TB	0.8	0.8	0.8	0.9	0.9	1.0	1.0	1.1	1.1

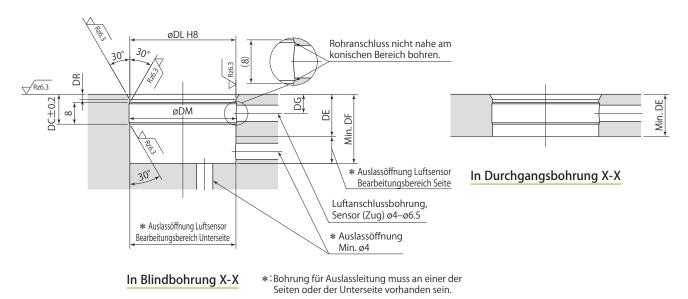

[●] CNB□-□TB (Zug- Sensormodell, Innengewindestange) 25, 35, 45 mm Hub sind nach Kundenvorgabe gefertigte Modelle.

Abmessungen

- Befestigungsschrauben werden nicht mitgeliefert.
- Empfohlenes Material für den Stift: SCM435-H (HB269–331)

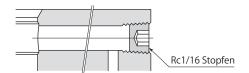
Тур		CNB01	-□PR	CNRO	2-□PB	CNRO	mm 4-□PB	
	(Hub)	CNDO	10, 15,		0, 35, 40,		- -□10	
	Druck	0.38		0.49×Y			Ι×Υ	
Zylinderkapazität (cm³)	Zug	0.23		0.29×Y			5×Y	
	Zug	Y=10	Y=15-50	Y=10	Y=15-50	Y=10	Y=15-50	
Ap)	64	Y+49	64	Y+49	67	Y+52	
В		3			5	5		
C		4			5		0	
D		2			2.5	3		
E		1			2.5		5	
F			0.5		5		0	
øG			5 -0.025 -0.050	3	9 -0.025 -0.050	4	7 -0.025 -0.050	
øG(ĵ		4.4		8.4		6.4	
øH		1-	4 ^{-0.016} _{-0.034}	1	6 ^{-0.016} _{-0.034}	1	8 -0.016 -0.034	
J		3			9		0.5	
		Y=10	Y=15-50	Y=10	Y=15-50	Y=10	Y=15-50	
K		25	Y+10	25	Y+10	26.5	Y+11.5	
1/11	,	Y=10, 15	Y=20-50	Y=10, 15	Y=20-50	Y=10, 15	Y=20-50	
KK		15.5	20.5	15.5	20.5	15.5	20.5	
М			9		9		9.5	
N			5		5		6	
R2)	1	8	2	2	2	4	
R3	3	2	2.5	2	5	2	8	
R4	ŀ	1	6.2	2	0	2	2	
S			6.5		6.5		7	
øT		1	0	1	0	1	2	
V		1	7	1	5	1	5	
øW			4.5		5.5		5.5	
W	1	M5>	<0.8	M6	×1	M6	×1	
øX			8		9.5		9.5	
Z1		R			3		5	
EA		5	5°	2	5°	2	0°	
ED		2			1.5		8	
O-Ring FA (Fluor-Gummi Härte Hs90)		Р			77		77	
O-Ring FB (Fluor-Gummi Härte Hs70)		AS56		AS568-028			8-030	
Stromregelventil*	Zulauf VCF01S			VCF		VCF01		
_	Rücklauf		01 <mark>S</mark> -O		01-0	VCF01-O		
Entlüftung	gsventil	VCE	01	VCE	01	VCE01		


^{*:} Wählen Sie abhängig von der Zylindergröße das geeignete VCF Modell.


Einzelheiten zu Optionen finden Sie auf der jeweiligen Seite. ● Stromregelventil → Seite 320 ● Entlüftungsventil → Seite 322

									kg
Hub	10	15	20	25	30	35	40	45	50
CNB01-□PB	0.5	0.5	0.5	0.5	0.5	0.6	0.6	0.6	0.6
CNB02-□PB	0.6	0.6	0.6	0.7	0.7	0.7	0.8	0.8	0.8
CNB04-□PB	0.8	0.8	0.8	0.9	0.9	1.0	1.0	1.1	1.1

[●] CNB□-□PB (Zug- Sensormodell, Bolzenstange) wird nach Kundenvorgabe gefertigt.


Detailzeichnung - Montage

Rz: ISO4287(1997)

- Bei der Montage ausreichend Schmierfett auf Fase und Bohrung auftragen. Wird zu viel Schmierfett aufgetragen, kann dieses die Anschlussbohrung blockieren und einen Sensordefekt verursachen.
- 30°-Konusbearbeitung ist zum Schutz des O-Rings vor Beschädigung erforderlich. Achten Sie bei Anbringen der Bohrung für die Sensorluft darauf, dass der konische Bereich frei ist.
- Die Bohrung für die Sensorluftleitung kann als Pilotbohrung für einen Rc 1/16 Stopfen verwendet werden.

									mm	
Тур		CNB01-□TB CNB01-□PB								
Hub	10	15	20	25	30	35	40	45	50	
DC	11	11	16	16	16	16	16	16	16	
DE	15.5	15.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	
DF	25.5	25.5	30.5	35.5	40.5	45.5	50.5	55.5	60.5	
DG	7	7	12	12	12	12	12	12	12	
øDL			,		35 +0.039					
øDM					35.6					
DR	2	2	1	1	1	1	1	1	1	
ВВ					M4					
F	30.5									
R2	18									
R3					22.5					

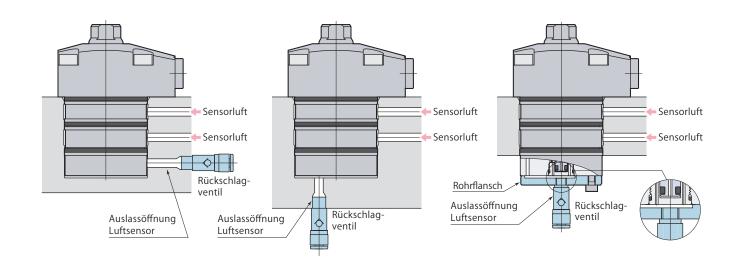
Spannzylinder Zug-Sensormodell

mm

Тур	CNB02-□TB CNB02-□PB								
Hub	10	15	20	25	30	35	40	45	50
DC	11	11	16	16	16	16	16	16	16
DE	15.5	15.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5
DF	25.5	25.5	30.5	35.5	40.5	45.5	50.5	55.5	60.5
DG	7	7	12	12	12	12	12	12	12
øDL					39 +0.039 0				
øDM					39.6				
DR	2	2	1	1	1	1	1	1	1
ВВ					M5				
F	35								
R2	22								
R3					25				

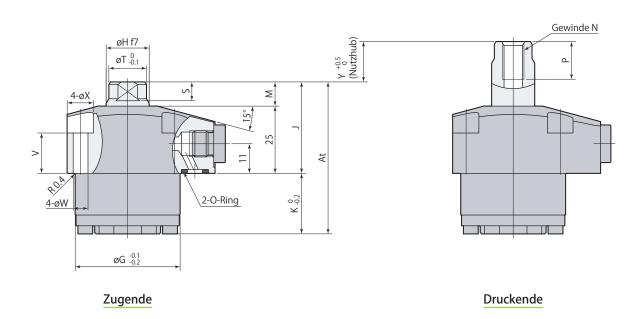
mm

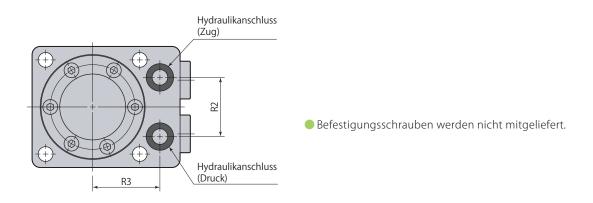
									111111	
Тур		CNB04-□TB CNB04-□PB								
Hub	10	15	20	25	30	35	40	45	50	
DC	11	11	16	16	16	16	16	16	16	
DE	15.5	15.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	
DF	27	27	32	37	42	47	52	57	62	
DG	7	7 7 12 12 12 12 12 12 12								
øDL					47 +0.039					
øDM					47.6					
DR	2	2	1	1	1	1	1	1	1	
ВВ		M5								
F	40									
R2	24									
R3					28					


CNB - - -

Vorsichtsmaßnahmen bei Verrohrung

Die Auslassöffnung für die Sensorluft ist im unten stehenden Diagramm abgebildet.


Montage in Blindbohrung (Auslass der Sensorluft : seitlich)


Montage in Blindbohrung (Auslass der Sensorluft : unten) Montage in Durchgangsbohrung

- Verwenden Sie ein Rückschlagventil mit einem Öffnungsdruck von max. 0.05 bar, falls die Gefahr des Eindringens von Metallspänen oder Kühlmittel besteht. Empfohlenes Rückschlagventil: Serie AKH oder AKB; Hersteller SMC
- Bei Montage in einer Durchgangsbohrung muss der Leitungsanschluss mittels Rohrflansch vorgenommen werden. Der Flansch wird mit M3 Gewinden an der Zylinderunterseite angebracht. Bringen Sie die Öffnung so an, dass der Auslass nicht blockiert wird. Siehe vorstehende Zeichnung.

Hydraulikanschluss (Druck) G1/8 4-Z1 \oplus \bigoplus_{i} **R**4 Hydraulikanschluss (Zug) G1/8 D 3.8 (Stopfenüberstand)

Doppelt wirkend

CNB - TN

				mm
Ту	р	CNB01-□TN	CNB02-□TN	CNB04-□TN
Υ	(Hub)	10, 15,	20, 25, 30, 35, 40,	45, 50
Zylinderkapazität	Druck	0.38×Y	0.49×Y	0.71×Y
(cm³)	Zug	0.23×Y	0.29×Y	0.45×Y
A	t	Y+39.5	Y+41.5	Y+45.5
В		38	45	50
C		48	55	60
D		29	32.5	35
E		19	22.5	25
F		30.5	35	40
øG		35	39	47
øН		14 -0.016	16 -0.016	18 -0.016 -0.034
J		33	34	35
K		Y+6.5	Y+7.5	Y+10.5
N		8	9	10
N		M6×1	M8×1.25	M8×1.25
Р		11	14	14
R.	2	18	22	24
R	3	22.5	25	28
R	4	16.2	20	22
S (Höhe Schl	üsselweite)	6	7	8
øT		12	14	16
U	(Schlüsselweite)	10	12	14
V		17	15	15
øW	1	4.5	5.5	5.5
øX		8	9.5	9.5
Z	Z1 R3		R3	R5
O-Ring (Fluor-Gur	mmi Härte Hs90)	P7	P7	P7
<u> </u>	Zulauf	VCF01S	VCF01	VCF01
Stromregelventil*	Rücklauf	VCF01S-O	VCF01-O	VCF01-O

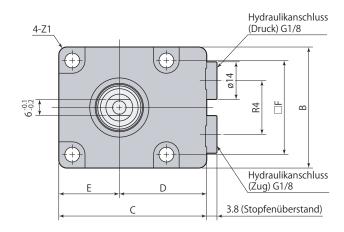
^{*:} Wählen Sie abhängig von der Zylindergröße das geeignete VCF Modell.

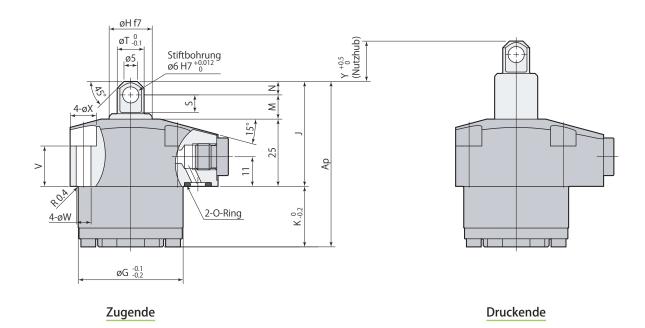
Entlüftungsventil

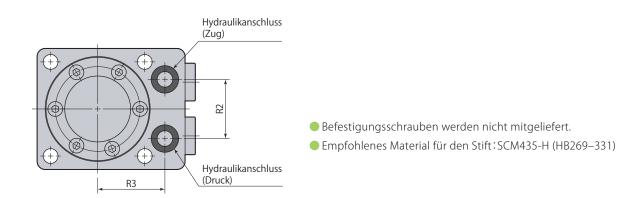
Einzelheiten zu Optionen finden Sie auf der jeweiligen Seite. ● Stromregelventil → Seite 320 ● Entlüftungsventil → Seite 322

VCE01

VCE01


VCE01

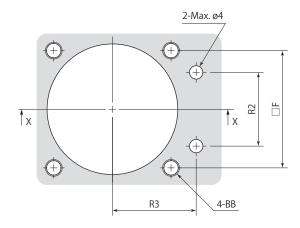

									kg
Hub	10	15	20	25	30	35	40	45	50
CNB01-□TN	0.4	0.4	0.5	0.5	0.5	0.5	0.6	0.6	0.6
CNB02-□TN	0.6	0.6	0.6	0.6	0.7	0.7	0.7	0.8	0.8
CNB04-□TN	0.8	0.8	0.8	0.9	0.9	1.0	1.0	1.1	1.1

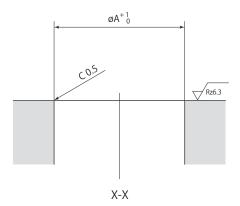

[●] CNB□-□TN (Kompaktes Modell, Innengewindestange) 25, 35, 45 mm Hub sind nach Kundenvorgabe gefertigte Modelle.

Abmessungen

(Bolzenstange)

				mm	
Тур)	CNB01-□PN	CNB02-□PN	CNB04-□PN	
Υ ((Hub)	10, 15,	20, 25, 30, 35, 40,	45, 50	
Zylinderkapazität	Druck	0.38×Y	0.49×Y	0.71×Y	
(cm³)	Zug	0.23×Y	0.29×Y	0.45×Y	
At		Y+45.5	Y+46.5	Y+51	
В		38	45	50	
С		48	55	60	
D		29	32.5	35	
E		19	22.5	25	
F		30.5	35	40	
øG		35	39	47	
øH		14 -0.016	16 -0.016	18 -0.016	
J		39	39	40.5	
К		Y+6.5	Y+7.5	Y+10.5	
M		9	9	9.5	
N		5	5	6	
R2	1	18	22	24	
R3		22.5	25	28	
R4		16.2	20	22	
S		6.5	6.5	7	
øT		10	10	12	
V		17	15	15	
øW		4.5	5.5	5.5	
øX	øX 8		9.5	9.5	
Z1		R3 R3 R5		R5	
O-Ring (Fluor-Gum	nmi Härte Hs90)	P7	P7	P7	
	Zulauf	VCF01 <mark>S</mark>	VCF01	VCF01	
Stromregelventil*	Rücklauf	VCF01 <mark>S</mark> -O	VCF01-O	VCF01-O	
Entlüftung	gsventil	VCE01	VCE01	VCE01	


^{*:} Wählen Sie abhängig von der Zylindergröße das geeignete VCF Modell.

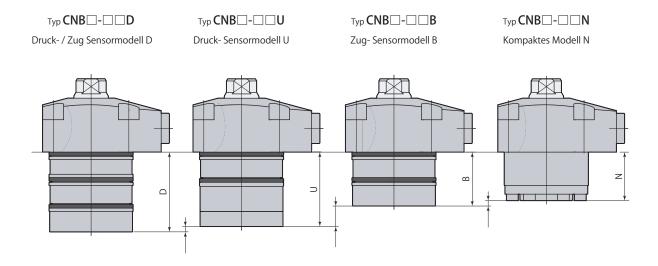

Einzelheiten zu Optionen finden Sie auf der jeweiligen Seite. ● Stromregelventil → Seite 320 ● Entlüftungsventil → Seite 322

Hub	10	15	20	25	30	35	40	45	50
CNB01-□PN	0.4	0.4	0.5	0.5	0.5	0.5	0.6	0.6	0.6
CNB02-□PN	0.6	0.6	0.6	0.6	0.7	0.7	0.7	0.8	0.8
CNB04-□PN	0.8	0.8	0.8	0.9	0.9	1.0	1.0	1.1	1.1

[●] CNB□-□PN (Kompaktes Modell, Bolzenstange) wird nach Kundenvorgabe gefertigt.

Detailzeichnung - Montage

Rz: ISO4287(1997)


mm

Т	CNB01-□TN	CNB02-□TN	CNB04-□TN
Тур	CNB01-□PN	CNB02-□PN	CNB04-□PN
øA	35	39	47
F	30.5	35	40
R2	18	22	24
R3	22.5	25	28
ВВ	M4	M5	M5

CNB - U

Maßvergleich

Spannzylinder

						mm
Тур	CNB01-□		CNB02-□		CNB04-□	
Y (Hub)		10, 15,	20, 25, 3	0, 35, 40,	45, 50	
D	Y=10	Y=15-50	Y=10	Y=15-50	Y=10	Y=15-50
	37	Y+22	37	Y+22	38.5	Y+23.5
U	Y+18.5		Y+19.5		Y+22.5	
В	Y=10	Y=15-50	Y=10	Y=15-50	Y=10	Y=15-50
	25	Y+10	25	Y+10	26.5	Y+11.5
N	Y+6.5		Y+7.5		Y+10.5	